Copied to
clipboard

G = C2×He3⋊C32order 486 = 2·35

Direct product of C2 and He3⋊C32

direct product, metabelian, nilpotent (class 3), monomial, 3-elementary

Aliases: C2×He3⋊C32, He34(C3×C6), (C6×He3)⋊6C3, (C3×He3)⋊18C6, (C3×C18)⋊3C32, (C3×C6).11He3, C3.14(C6×He3), C6.14(C3×He3), (C3×C6).8C33, He3⋊C37C6, C33.16(C3×C6), (C2×He3)⋊3C32, C32.11(C2×He3), C32.8(C32×C6), (C32×C6).15C32, (C6×3- 1+2)⋊9C3, (C3×3- 1+2)⋊16C6, (C3×C9)⋊7(C3×C6), (C2×He3⋊C3)⋊3C3, SmallGroup(486,217)

Series: Derived Chief Lower central Upper central

C1C32 — C2×He3⋊C32
C1C3C32C33C3×3- 1+2He3⋊C32 — C2×He3⋊C32
C1C3C32 — C2×He3⋊C32
C1C6C32×C6 — C2×He3⋊C32

Generators and relations for C2×He3⋊C32
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e3=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, dbd-1=ebe-1=bc-1, bf=fb, cd=dc, ce=ec, cf=fc, ede-1=bd, fdf-1=c-1d, ef=fe >

Subgroups: 576 in 160 conjugacy classes, 66 normal (12 characteristic)
C1, C2, C3, C3, C6, C6, C9, C32, C32, C32, C18, C3×C6, C3×C6, C3×C6, C3×C9, He3, He3, 3- 1+2, C33, C33, C3×C18, C2×He3, C2×He3, C2×3- 1+2, C32×C6, C32×C6, He3⋊C3, C3×He3, C3×3- 1+2, C2×He3⋊C3, C6×He3, C6×3- 1+2, He3⋊C32, C2×He3⋊C32
Quotients: C1, C2, C3, C6, C32, C3×C6, He3, C33, C2×He3, C32×C6, C3×He3, C6×He3, He3⋊C32, C2×He3⋊C32

Smallest permutation representation of C2×He3⋊C32
On 54 points
Generators in S54
(1 34)(2 35)(3 36)(4 30)(5 28)(6 29)(7 33)(8 31)(9 32)(10 37)(11 38)(12 39)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)
(1 14 10)(2 15 11)(3 13 12)(4 54 8)(5 52 9)(6 53 7)(16 23 19)(17 24 20)(18 22 21)(25 32 28)(26 33 29)(27 31 30)(34 41 37)(35 42 38)(36 40 39)(43 50 46)(44 51 47)(45 49 48)
(1 32 20)(2 29 22)(3 27 16)(4 46 39)(5 44 41)(6 49 35)(7 45 38)(8 50 40)(9 47 34)(10 25 24)(11 33 18)(12 30 19)(13 31 23)(14 28 17)(15 26 21)(36 54 43)(37 52 51)(42 53 48)
(1 16 31)(2 24 25)(3 21 29)(4 41 50)(5 38 44)(6 36 48)(7 39 49)(8 34 43)(9 42 47)(10 19 27)(11 17 28)(12 22 33)(13 18 26)(14 23 30)(15 20 32)(35 51 52)(37 46 54)(40 45 53)
(1 2 3)(4 9 53)(5 7 54)(6 8 52)(10 11 12)(13 14 15)(16 24 21)(17 22 19)(18 23 20)(25 29 31)(26 30 32)(27 28 33)(34 35 36)(37 38 39)(40 41 42)(43 51 48)(44 49 46)(45 50 47)

G:=sub<Sym(54)| (1,34)(2,35)(3,36)(4,30)(5,28)(6,29)(7,33)(8,31)(9,32)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,14,10)(2,15,11)(3,13,12)(4,54,8)(5,52,9)(6,53,7)(16,23,19)(17,24,20)(18,22,21)(25,32,28)(26,33,29)(27,31,30)(34,41,37)(35,42,38)(36,40,39)(43,50,46)(44,51,47)(45,49,48), (1,32,20)(2,29,22)(3,27,16)(4,46,39)(5,44,41)(6,49,35)(7,45,38)(8,50,40)(9,47,34)(10,25,24)(11,33,18)(12,30,19)(13,31,23)(14,28,17)(15,26,21)(36,54,43)(37,52,51)(42,53,48), (1,16,31)(2,24,25)(3,21,29)(4,41,50)(5,38,44)(6,36,48)(7,39,49)(8,34,43)(9,42,47)(10,19,27)(11,17,28)(12,22,33)(13,18,26)(14,23,30)(15,20,32)(35,51,52)(37,46,54)(40,45,53), (1,2,3)(4,9,53)(5,7,54)(6,8,52)(10,11,12)(13,14,15)(16,24,21)(17,22,19)(18,23,20)(25,29,31)(26,30,32)(27,28,33)(34,35,36)(37,38,39)(40,41,42)(43,51,48)(44,49,46)(45,50,47)>;

G:=Group( (1,34)(2,35)(3,36)(4,30)(5,28)(6,29)(7,33)(8,31)(9,32)(10,37)(11,38)(12,39)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54), (1,14,10)(2,15,11)(3,13,12)(4,54,8)(5,52,9)(6,53,7)(16,23,19)(17,24,20)(18,22,21)(25,32,28)(26,33,29)(27,31,30)(34,41,37)(35,42,38)(36,40,39)(43,50,46)(44,51,47)(45,49,48), (1,32,20)(2,29,22)(3,27,16)(4,46,39)(5,44,41)(6,49,35)(7,45,38)(8,50,40)(9,47,34)(10,25,24)(11,33,18)(12,30,19)(13,31,23)(14,28,17)(15,26,21)(36,54,43)(37,52,51)(42,53,48), (1,16,31)(2,24,25)(3,21,29)(4,41,50)(5,38,44)(6,36,48)(7,39,49)(8,34,43)(9,42,47)(10,19,27)(11,17,28)(12,22,33)(13,18,26)(14,23,30)(15,20,32)(35,51,52)(37,46,54)(40,45,53), (1,2,3)(4,9,53)(5,7,54)(6,8,52)(10,11,12)(13,14,15)(16,24,21)(17,22,19)(18,23,20)(25,29,31)(26,30,32)(27,28,33)(34,35,36)(37,38,39)(40,41,42)(43,51,48)(44,49,46)(45,50,47) );

G=PermutationGroup([[(1,34),(2,35),(3,36),(4,30),(5,28),(6,29),(7,33),(8,31),(9,32),(10,37),(11,38),(12,39),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54)], [(1,14,10),(2,15,11),(3,13,12),(4,54,8),(5,52,9),(6,53,7),(16,23,19),(17,24,20),(18,22,21),(25,32,28),(26,33,29),(27,31,30),(34,41,37),(35,42,38),(36,40,39),(43,50,46),(44,51,47),(45,49,48)], [(1,32,20),(2,29,22),(3,27,16),(4,46,39),(5,44,41),(6,49,35),(7,45,38),(8,50,40),(9,47,34),(10,25,24),(11,33,18),(12,30,19),(13,31,23),(14,28,17),(15,26,21),(36,54,43),(37,52,51),(42,53,48)], [(1,16,31),(2,24,25),(3,21,29),(4,41,50),(5,38,44),(6,36,48),(7,39,49),(8,34,43),(9,42,47),(10,19,27),(11,17,28),(12,22,33),(13,18,26),(14,23,30),(15,20,32),(35,51,52),(37,46,54),(40,45,53)], [(1,2,3),(4,9,53),(5,7,54),(6,8,52),(10,11,12),(13,14,15),(16,24,21),(17,22,19),(18,23,20),(25,29,31),(26,30,32),(27,28,33),(34,35,36),(37,38,39),(40,41,42),(43,51,48),(44,49,46),(45,50,47)]])

70 conjugacy classes

class 1  2 3A3B3C···3J3K···3AB6A6B6C···6J6K···6AB9A···9F18A···18F
order12333···33···3666···66···69···918···18
size11113···39···9113···39···99···99···9

70 irreducible representations

dim111111113399
type++
imageC1C2C3C3C3C6C6C6He3C2×He3He3⋊C32C2×He3⋊C32
kernelC2×He3⋊C32He3⋊C32C2×He3⋊C3C6×He3C6×3- 1+2He3⋊C3C3×He3C3×3- 1+2C3×C6C32C2C1
# reps11186218626622

Matrix representation of C2×He3⋊C32 in GL9(𝔽19)

1800000000
0180000000
0018000000
0001800000
0000180000
0000018000
0000001800
0000000180
0000000018
,
160000000
0181000000
0180000000
0120010000
0120001000
0120100000
080000010
080000001
080000100
,
700000000
070000000
007000000
000700000
000070000
000007000
000000700
000000070
000000007
,
1100004000
12001012000
110001112000
800008010
1000080011
000008700
0000018000
18100018000
70110018000
,
700000090
1800000087
700000180
11000000180
01100000180
12070000180
00000110120
8007000120
1000100120
,
160000000
0181000000
0180000000
7120070000
7120007000
7120700000
12800000110
12800000011
12800001100

G:=sub<GL(9,GF(19))| [18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18],[1,0,0,0,0,0,0,0,0,6,18,18,12,12,12,8,8,8,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0],[7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7],[11,12,11,8,1,0,0,18,7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,11,0,1,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,4,12,12,8,8,8,18,18,18,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,11,0,0,0,0],[7,18,7,11,0,12,0,8,1,0,0,0,0,11,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,1,0,0,0,0,0,0,9,8,8,18,18,18,12,12,12,0,7,0,0,0,0,0,0,0],[1,0,0,7,7,7,12,12,12,6,18,18,12,12,12,8,8,8,0,1,0,0,0,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11,0] >;

C2×He3⋊C32 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3\rtimes C_3^2
% in TeX

G:=Group("C2xHe3:C3^2");
// GroupNames label

G:=SmallGroup(486,217);
// by ID

G=gap.SmallGroup(486,217);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,986,735,3250]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^3=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,d*b*d^-1=e*b*e^-1=b*c^-1,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,e*d*e^-1=b*d,f*d*f^-1=c^-1*d,e*f=f*e>;
// generators/relations

׿
×
𝔽